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22Feb 2011 earthquake (PGA (A) = 0.9 g) adopting 2003 LIDAR slope surface
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Figure 23 Modelled Slope/W decoupled displacements of cross-section 4 for the 22 February 2011
earthquake and adopting variable estimates of the material strength. Each datapoint represents a modelled slide
surface and the corresponding estimate of its displacement as a result of the 22 February 2011 earthquake —
adopting the synthetic free-field rock outcrop earthquake acceleration time histories. Arr is the peak horizontal
ground acceleration of the free field motion used in the assessment. The dashed lines represent the total inferred
coseismic permanent displacement of the slope along the cross-section during the given earthquake.

13Jun 2011 earthquake (PGA (Ag) = 0.4 g) adopting 2011a LiDAR slope surface
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Figure 24 13 June 2011 earthquake, modelled Slope/W decoupled displacements for cross-section 4, and
adopting variable estimates of the material strength. Each datapoint represents a modelled slide surface and the

corresponding estimate of its displacement as a result of the 13 June 2011 earthquake — adopting the synthetic
free-field rock outcrop earthquake acceleration time histories. Agr is the peak horizontal ground acceleration of
the free field motion used in the assessment. The dashed line represents the inferred coseismic permanent

displacement of the slope along the cross-section during the given earthquake.
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Figure 25  Results from the seismic slope stability assessment for cross-section 4, for the 22 February 2011
earthquake, adopting model 1 material strength parameters.
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Figure 26  Results from the seismic slope stability assessment for cross-section 4, for the 22 February 2011
earthquake, adopting model 2 material strength parameters.
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The results show that:

® A good correlation between the inferred permanent coseismic displacements from
crack apertures and modelled displacements of the slope for the 22 February 2011
earthquakes was obtained adopting material parameter models 1 and 2.

° A good correlation between the inferred permanent coseismic displacements from
crack apertures and modelled displacements of the cliff for the 13 June 2011
earthquakes was obtained adopting material parameter models 2 and 3.

o The slide surfaces with the lowest yield accelerations adopting the upper range of
material strength parameters (model 1) were mainly in the upper lava breccia,
indicating a lower factor of safety of the upper part of the cliff.

o When the material strength parameters were degraded (i.e., adopting model 2 material
strength parameters) the slide surfaces with the lowest yield accelerations are those
that extend to the cliff toe, although the yield accelerations of the slide surfaces in the
upper breccia are still low. These observations are consistent with the current slope
condition, where recent cracks extend down from the crest to the toe.

° The slope material strength parameters may be reducing after each significant
earthquake, as a result of the earthquake-induced fracturing and displacement of the
rock mass.

® There is a good correlation between the locations and shape of the slide surfaces
derived from the limit equilibrium and finite element static stability modelling, and those
from the dynamic modelling.

4.1.2.3 Forecast modelling of permanent slope deformation

Permanent displacements, from the decoupled assessment of results from the 22 February
and 13 June 2011 modelled earthquakes, were calculated for a range of slide-surface
geometries with different ratios of yield acceleration (Ky) to the maximum average
acceleration of the failure mass (Kuax) for a given slide surface. The maximum average
acceleration (Kyax) was calculated for each selected slide surface by taking the maximum
value of the average acceleration time history from the response to the synthetic earthquake.
About 10-20 slide surfaces (with the lowest value of critical yield acceleration Ky) were
chosen to represent the results from each earthquake input motion, adopting different
estimates of the shear strength of the main materials (models 2 and 3 in Table 17).

The results from the assessment are shown in Figure 27 for those slide surfaces shown in
Figure 25 and Figure 26. The results show that between Ky/Kyax values of 0.1 and 0.5, and
Ky/Ax values of 0.3 and 0.9, the data are well fitted to a straight line (exponential trend line)
in semi-log space. The coefficient of determination (R?) is 0.89 for Ky/Kyax and 0.82 for
Ky/Arr, and includes all of the plotted data (N = 79). The lower coefficient of determination for
ratios of Ky/As is not unusual as Newmark (1965) displacements are highly sensitive to the
high frequency components of the input motions, which can vary from event to event. By
comparison, Kyax “filters” the higher frequency components, and thus is less sensitive to the
input motion characteristics.
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The peak ground acceleration of the input motion (As) does not take into account
amplification effects caused by the slope geometry (Appendix 5). From the data in Figure 27,
the mean ratio of Kyax to Ars for cross-section 4 is 2.2 (£0.3 at one standard deviation),
meaning that Kyax is on average 2.2 times greater than the peak horizontal ground
acceleration of the input motion, assuming a linear relationship.

For ratios of Ky/Auax in Figure 27, the estimated magnitudes of displacement are consistent
with those reported by Jibson (2007), where these data plot between the ranges for
earthquakes of M6.5-7.5 as reported by Makdisi and Seed (1978) and plotted by Jibson
(2007).
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Figure 27 Decoupled Slope/W displacements calculated for cross-section 4, for different ratios of yield
acceleration to maximum average acceleration of the mass (Ky/Kuax), and maximum acceleration of the mass
(Ky/Amax), for selected slide-surface geometries, and given material shear strength parameter models 2 and 3.
Amax is the peak acceleration of the input earthquake time acceleration history. Synthetic rock outcrop time
acceleration histories for the 22 February and 13 June 2011 earthquakes were used as inputs for the assessment
(N = 79). The dashed lines are exponential trend lines fitted to the semi-log data. The formula and the coefficient
of determination (R?) for the trend lines are shown.

The results from the decoupled assessment show that the magnitude of permanent slope
displacement during an earthquake will vary in response to:

1. the shear strength of the rock mass at the time of the earthquake;

2. pore pressures within tension cracks and the rock mass, at the time of the earthquake;
and

3.  duration and amplitude of the earthquake shaking.
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For cross-section 4, the relationship between the yield acceleration and the maximum
average acceleration (from Figure 27) has been used to determine the likely range of
displacements of a given failure mass with an adopted yield acceleration (Ky) at given levels
of peak free field horizontal ground accelerations (Ar) and the equivalent maximum average
ground acceleration (Kyax). For cross-sections 2 and 6, the pseudostatic method of
assessing the yield acceleration of each cross-section was used (the results are shown in
Table 18), and the Ky/Kuax relationship (Figure 27), established for cross-section 4, was
used to determine the likely magnitude of permanent displacement in a future earthquake.
This has been done using the seven earthquake event bands, used to represent the range of
earthquake events the slopes could be subjected to in the future.

The results are shown in Table 20. Conservative yield accelerations have been adopted,
assuming material parameter model 3, to take into account the possibility that the current
shear strength of the materials is now degraded as a result of the past movement and
cracking.

Displacement of the slide mass will not occur at maximum average accelerations (Kyax) less
than the critical yield acceleration. However, the critical yield acceleration depends upon the
strength of the slide surface at the time of the earthquake.
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4.1.3  Slope stability — Summary of results

The main results from the static and dynamic stability assessment for assessed source areas
1-3 are:

1. Under current conditions, it is possible for failure of the trial slide surfaces to occur
under either static or dynamic conditions. Material strengths — and therefore the slope
factors of safety — may reduce with time (weathering), water content, and further
movement of the slope under either static or dynamic conditions.

2. Under static and dynamic conditions the slide surfaces with the lowest factors of safety
and those with the lowest yield accelerations (Ky), are those associated with small
failures at the crest and face of the slope, especially when water-filled tension cracks
are included.

3.  The most critical modelled slide surfaces are those with the lowest factors of safety and
yield accelerations passing through the rock mass from slope crest to toe

4. Seismic site response assessment suggests that the peak ground amplification factors
between the peak synthetic rock outcrop free-field accelerations and the modelled peak
accelerations at the cliff crest vary between 2.6 for horizontal motions and up to 3.2 for
vertical motions and that the relationship is non-linear.

5. Given the relatively low static factors of safety (1.4 and 1.1 for cross-sections 2 and 4
respectively), an increase in pore water pressures in open tension cracks within the
overlying loess and joints within the underlying rock mass could lead to instability of the
slope under static conditions (i.e., short duration high intensity rain).

6.  Given the relatively low yield acceleration of the slope (estimated to be about 0.2 g for
cross-section 4), it is likely that future earthquakes could reactivate the slope, leading
to permanent displacements that could be quite large. The magnitude of any coseismic
permanent displacements will depend upon:

a.  The shear strength of the materials at the time of the earthquake;

b.  The pore pressure/water content conditions within the slope at the time of the
earthquake; and

c.  The duration and amplitude of the earthquake shaking at the site.

7. Earthquake-induced failures are likely to be larger in volume and the debris travel
further, than rainfall-induced failures.

It is inferred that parts of the cliff crest have already undergone more than one metre of
permanent slope displacement during the 2010/11 Canterbury earthquakes. Given the thin
layer of loess/fill above rock (1-2 m), the magnitude of displacement inferred from the sum of
crack apertures suggest that failure/movement of the underlying rock has occurred. This
displacement may have reduced the shear strength of critical materials in the slope, making
the slope more susceptible to future earthquakes. In addition, there may be an unknown
amount of further displacement that the slopes may be able to undergo before failing
catastrophically (i.e., where the magnitude of displacement causes the failure mass to break
down to become a mobile failure).
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